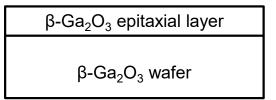
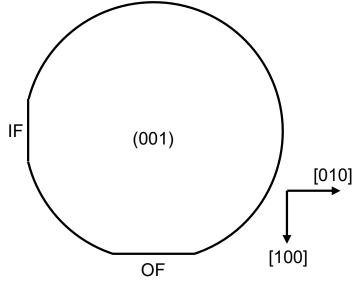
# β-Ga<sub>2</sub>O<sub>3</sub> epi-wafer for developing intermediate breakdown voltage trench MOSSBD

## Epi-layer

| Items                                                                                                | Specifications                        |
|------------------------------------------------------------------------------------------------------|---------------------------------------|
| Dopant                                                                                               | Si+Cl*1 (n-type)                      |
| Doping concentration *A value can be selected in increments of 1×10 <sup>16</sup> cm <sup>-3</sup> . | 4–9×10 <sup>16</sup> cm <sup>-3</sup> |
| Thickness *A value can be selected in increments 1 µm.                                               | 5–10 μm                               |


<sup>\*1:</sup> Unintentionally-doped

### Wafer


| Items           | Specifications   |
|-----------------|------------------|
| Dopant          | Sn (n-type)      |
| Resistivity     | 0.007-0.042 Ω·cm |
| Orientation     | (001)            |
| Size            | 2 inch, 100 mm   |
| Backside finish | CMP              |
| Thickness       | 650 μm           |
| XRD FWHM        | ≦50 arcsec       |

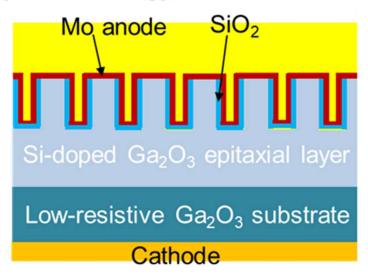
#### Remarks

- 1 There are cases in which the other side of OF is chipped (a maximum of around IF width).
- 2 These products must be used for research and development purposes only.
- 3 The substrates must not be used as a seed crystal.
- 4 The specifications are subject to change without notice.

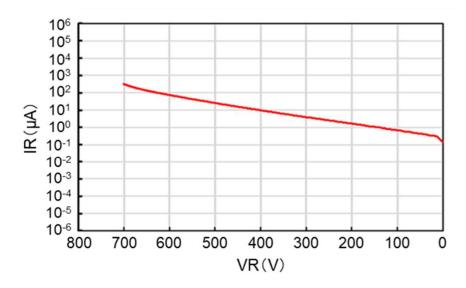


Cross section of β-Ga<sub>2</sub>O<sub>3</sub> epitaxial wafer



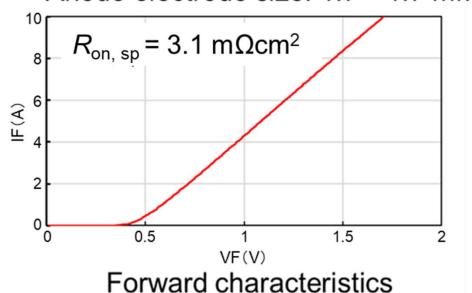

Orientation




Novel Crystal Technology, Inc.

## Example of SBD characteristics using the epi-wafer for developing intermediate breakdown voltage trench MOSSBD

## Novel Crystal Technology, Inc.




Schematic cross-section



Reverse characteristics

Anode electrode size: 1.7 × 1.7 mm<sup>2</sup>



10 8 6 W 2 0 0 0.5 1 1.5 2 VF(V)

 $R_{\text{on,sp}}$  dependence on  $V_{\text{F}}$