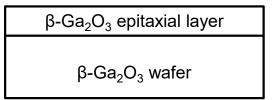
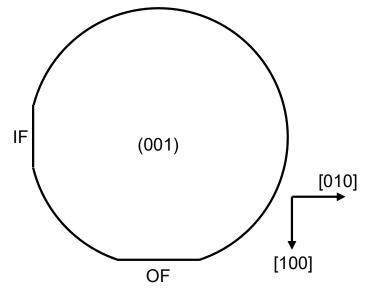
## β-Ga<sub>2</sub>O<sub>3</sub> epi-wafer for developing planar SBD

### Epi-layer

| Items                | Specifications                                             |
|----------------------|------------------------------------------------------------|
| Dopant               | Si+Cl*1 (n-type)                                           |
| Doping concentration | The mid to late order of 10 <sup>15</sup> cm <sup>-3</sup> |
| Thickness            | 15 µm                                                      |


<sup>\*1:</sup> Unintentionally-doped

#### Wafer

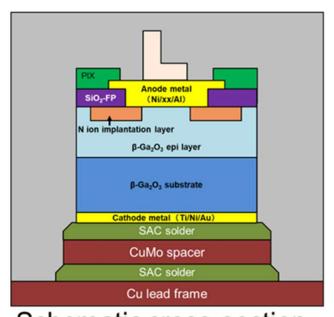

| Items           | Specifications   |
|-----------------|------------------|
| Dopant          | Sn (n-type)      |
| Resistivity     | 0.007-0.042 Ω·cm |
| Orientation     | (001)            |
| Size            | 2 inch, 100 mm   |
| Backside finish | CMP              |
| Thickness       | 650 μm           |
| XRD FWHM        | ≦50 arcsec       |

#### Remarks

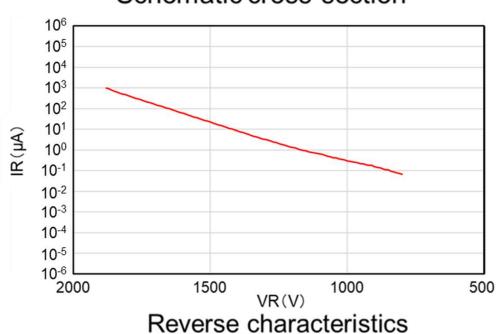
- 1 There are cases in which the other side of OF is chipped (a maximum of around IF width).
- 2 These products must be used for research and development purposes only.
- 3 The substrates must not be used as a seed crystal.
- 4 The specifications are subject to change without notice.



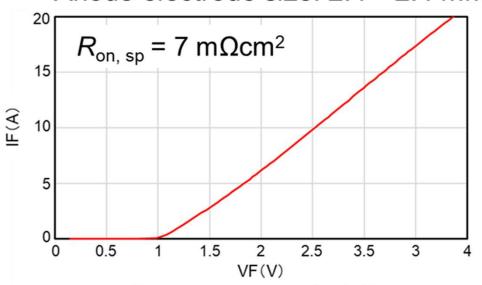
Cross section of  $\beta$ -Ga<sub>2</sub>O<sub>3</sub> epitaxial wafer



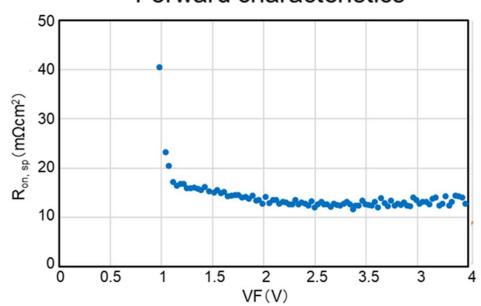

Orientation




Novel Crystal Technology, Inc.


# Example of SBD characteristics using the epi-wafer for developing planar SBD Novel Crystal Technology, Inc.




Schematic cross-section



Anode electrode size:  $2.4 \times 2.4 \text{ mm}^2$ 



Forward characteristics



 $R_{\text{on, sp}}$  dependence on  $V_{\text{F}}$